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Abstract 9 

Process-based distributed hydrologic models (PBHMs), which link watershed 10 

characteristics with process representations, are useful tools to evaluate both the distributed 11 

and ensemble hydrologic responses of a basin to climate inputs. However, complexities 12 

associated with parameter interactions and their spatial heterogeneities may produce high 13 

uncertainties in the parameterization of a PBHM. The Budyko curve framework presented in 14 

this work offers an effective approach for evaluating variabilities in the water balance 15 

components using a PBHM and explores the link between model performance with parameter 16 

heterogeneities and the Budyko curve characteristics. The PBHM was calibrated using a multi-17 

site calibration strategy (MLT), which was built upon a step-wise calibration algorithm 18 

combined with multiple calibration targets including river discharges, evapotranspiration and 19 

ground water heads to reduce the compensation errors caused by component interactions. This 20 

strategy was tested for the Kalamazoo River watershed in Michigan, USA, with obvious 21 

physiographic and land surface heterogeneities. The Budyko framework characterized the 22 

water balance variability at the sub-watershed scale; two empirical methods are employed to 23 

evaluate calibrated parameters using Budyko-estimated values and to assess the physical 24 

relevance of parameters. The relative infiltration capacity is found to play an important role in 25 

affecting the spatial variability of the annual water balances of this watershed. This work brings 26 

out the importance of optimizing calibration strategies by linking catchment heterogeneities 27 

with processes reasoning in order to understand the underlying hydrologic controls. 28 

Keywords: hydrologic models, model calibration, water budgets, Budyko curve 29 

1. Introduction 30 

Water resources management in an era of global change requires hydrologists to provide 31 

reliable predictions of water fluxes and to analyze and interpret their distributed and evolving 32 
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roles (Wagener et al., 2010; McDonnell and Beven, 2014). At the catchment scale, it is of great 33 

interest to link the structure of a watershed to its response to climate variability and to evaluate 34 

water budget components and their variability (Sivapalan, 2006). Two approaches have been 35 

used in the past decades to study annual water budgets and their inter-annual variability: (a) 36 

the empirical approach and (b) process-based modeling (Sivapalan et al., 2011). One classic 37 

example of an empirical approach is Budyko’s work (Budyko, 1974), which assumes that the 38 

partition of precipitation into evaporation and runoff could be determined from available water 39 

measured with precipitation (P) and available energy measured with potential 40 

evapotranspiration (PET, Ep). Based on the Budyko hypothesis, the ratio of actual 41 

evapotranspiration over precipitation (ET/P), i.e., the evaporation ratio, is fundamentally 42 

related to the ratio of potential evapotranspiration over precipitation (Ep /P), i.e., the climate 43 

dryness index (Budyko, 1974): 44 
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              (1) 45 

The Budyko framework was used to evaluate the inter-annual variability of annual water 46 

balances as well as water balances at seasonal time scales. For example, Yang et al. (2007) 47 

evaluated long time series of climate data and discharge in 108 non-humid catchments of China 48 

using the Budyko framework and found that the inter-annual variability of water-energy 49 

balance can be expressed with infiltration capacity, soil water storage capacity and the average 50 

ground surface slope. Wang (2012) studied effects of annual water storage changes on the inter-51 
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annual water balances of 12 watersheds in Illinois based on long-term soil moisture and 52 

groundwater level observations using the Budyko framework. The observed deviations of 53 

Budyko-type curves for different watersheds can reflect the ensemble effects of the climate 54 

fluctuations (Milly, 1994) and watershed characteristics such as storage (Fang et al., 2016) and 55 

soil moisture capacity, topography and soil properties (Yokoo et al., 2008), vegetation type and 56 

dynamics (Zhang et al., 2001; Oudin et al., 2008; Domohue et al., 2012) on the mean annual 57 

water balances. However, as with most empirical approaches, the derivation of Budyko-type 58 

curves lacks the explicit representations of interactions of climate inputs and various 59 

hydrologic processes. It is difficult for empirical approaches to distinguish the effects of 60 

different hydrologic processes, especially when considering the intra-annual (e.g. daily) 61 

variability of water balances (Chen et al., 2013; Fang et al., 2016).  62 

PBHMs, on the other hand, describe the hydrologic processes explicitly and provide a 63 

direct link between catchment structures and response behaviors. Simulations based on PBHMs 64 

are suitable for distinguishing the distributed flow pathways (Beven, 2002), quantifying the 65 

water storage changes in hydrologic systems (Niu et al., 2014) and understanding the physical 66 

processes in controlling the hydrologic responses (Shen et al., 2013). They require, however, a 67 

large amount of input data in representing the physical processes and abundant observed data 68 

to calibrate the parameters (Beven and Binley, 1992; Ragettli and Pellicciotti, 2012). Co-69 

evolution of water budget components in a PBHM with various parameter suits may contribute 70 

to similar ensemble predictions; this phenomenon has been famously generalized by (Beven, 71 

1993; and Beven and Freer 2001) as the equifinality problem. Calibration against a single target 72 
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(e.g., stream discharge) does not guarantee that internal processes are all correctly simulated; 73 

compensation errors could be produced with discrepancies coexisting in more than one 74 

hydrologic component representing the processes. For example, ungauged infiltration and 75 

lateral groundwater flow processes may cause underestimated (overestimated) groundwater 76 

supply while compensated by overestimated (underestimated) surface runoff to achieve 77 

comparable stream discharge results (Ragettli and Pellicciotti, 2012). An effective method for 78 

reducing uncertainty in parameter identification in PBHMs might be through evaluations 79 

against a number of responses representing different hydrological components (Anderton et al., 80 

2002). Multistep, multi-site, and multivariable calibration methods are being widely applied by 81 

calibrating different internal processes to improve both the overall and distributed model 82 

performances (Ragettli and Pellicciotti, 2012; Stahl et al., 2008; Sutanudjaja et al., 2014; Choi 83 

et al., 2015), e.g., step-wise optimization using stream discharge, groundwater heads, and 84 

remotely-sensed soil moisture data as the optimization objectives; and calibration to data from 85 

multiple gauging stations in different sub-watersheds. 86 

The objectives of this paper are to: (1) quantify the spatial and temporal variability of 87 

annual water balances in a semi-humid watershed in Michigan, USA using a PBHM; (2) use a 88 

multi-site calibration strategy combined with multiple criteria evaluations to understand how 89 

parameters, process representations and water budget results change across scales; and (3) 90 

evaluate calibrated parameters with Budyko-estimated values to assess the physical relevance 91 

of parameters and to identify deficiencies in each methodology. Briefly, we addressed the 92 
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question of how different empirical equations for the parameter ω in the Budyko curve 93 

formulation compare with simulated results based on a PBHM in a Great Lakes watershed.  94 

To address these questions, we use a PBHM, PAWS (Process-based Adaptive Watershed 95 

Simulator, Shen and Phanikumar (2010)). The model can simulate different hydrologic 96 

components and states including surface runoff, channel flow, groundwater, ET, soil moisture, 97 

soil temperature and changes in storage. Vegetation growth dynamics are also simulated by 98 

coupling PAWS with the land surface model CLM 4.0 as described in Shen et al. (2013; 2014). 99 

We first establish a calibration procedure to ensure that stream discharge and other important 100 

hydrologic components such as ET and groundwater are correctly simulated. A stepwise 101 

calibration method was applied to reduce the compensation errors. For reducing uncertainty in 102 

scaled heterogeneity, a multi-site calibration (MLT) method is employed and combined with 103 

multi-criteria evaluations. For the second effort, instead of attempting to elaborate on the 104 

heterogeneity within each process, we focus on inter-annual water balances at sub-watershed 105 

scale and study the ensemble catchment performances using the Budyko framework. 106 

2. Methods 107 

2.1 The Model 108 

Governing equations and numerical details of the PAWS model have been explained in 109 

Shen and Phanikumar (2010) and presented in Table 2 of Niu et al. (2014). The coupling details 110 

of PAWS with CLM 4.0 have been extensively discussed and evaluated earlier (Shen et al., 111 

2013; Riley and Shen, 2014; Niu et al., 2014; Niu and Phanikumar, 2015; Qiu et al., 2019). 112 
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Briefly, PAWS includes key hydrologic processes in the domains of surface flow, surface 113 

ponding, channel flow, unsaturated vadose zone and saturated groundwater flow. PAWS uses 114 

a structured grid and the finite-volume method to solve the governing partial differential 115 

equations in different hydrologic units. The overland flow governed by diffusive wave equation 116 

occurs in the surface flow domain while infiltration and evaporation happen in the ponding 117 

domain. Runoff occurs when the water depth of ponding domain is in excess of the interception 118 

depth. Water may also backfill into the ponding domain during flood conditions. The overland 119 

flow in the surface flow domain interacts and exchanges water with river segments. Channel 120 

flow is simulated using the diffusive wave equation and its exchange with groundwater is 121 

modeled based on the leakance concept (Gunduz and Aral, 2005). The vadose zone is simulated 122 

in 1-D columns connected to land surface cells at the top and saturated groundwater flow cells 123 

at the bottom. PAWS conceptualizes the unsaturated vadose zone as an array of vertical soil 124 

columns on the assumption that lateral fluxes in this domain are negligible. The saturated - 125 

unsaturated soil water flow is governed by the Richards equation with the vegetation uptake as 126 

a sink term. PAWS uses the concept of root water efficiency (Lai and Katul, 2000) to adjust 127 

the vegetation root water uptake fluxes along the soil column. The van Genuchten formulation 128 

is employed for soil water retention calculations. Field capacity, saturated water content and 129 

wilting point are set in correspondence to the soil properties. Phase change is also considered 130 

by applying the freezing-point depression formula in (Niu and Yang, 2006) to reduce hydraulic 131 

conductivities in freezing soils. The last computational cell of the soil column, whose thickness 132 

changes as the water table fluctuates, serves as the linkage between vadose zone and 133 
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groundwater. Quasi- 3D Groundwater equation derived from Darcy’s law is employed for 134 

solving groundwater flow. The vegetation dynamics, energy cycling, and carbon/nutrient 135 

cycling are incorporated through CLM (Oleson et al., 2010).  136 

2.2 Sites and Data Sources 137 

2.2.1 Site descriptions 138 

 The Kalamazoo River Watershed (KRW) is located in the southwest portion of the lower 139 

peninsula of Michigan (Figure 1). This watershed has a drainage area of approximately 2,020 140 

square miles (5,200 km2) and it drains portions of nine counties in Michigan. The Kalamazoo 141 

River stretches 130 miles (210 km) from the junction of its north and south branches to its 142 

outlet at Lake Michigan. Based on the 10-digit Hydrologic Unit Code (HUC), the KRW is 143 

divided into 9 sub-watersheds (Figure. 1). Substrates in the headwaters and upstream segment 144 

consist of mostly sand, gravel and some cobble. The substrates in the streams of the middle 145 

segment are dominated by gravel and cobble. In contrast, the substrates in the mouth segment 146 

streams are mostly composed of sand and silt. Annual mean precipitation in this area averages 147 

~970 mm and there is an increase of annual snowfall from the head waters to the mouth area 148 

due to the lake effect (Wesley, 2005). Average growing season increases from ~150 days at the 149 

eastern end of the watershed to ~180 days near Lake Michigan. The land surface elevation 150 

ranges from 175 to 380 meters above the sea level and varies distinctly in different sub-basins. 151 

Seasonal ET demands vary throughout the year as the solar radiation and air temperature 152 

change. The bedrock is mainly cold-water shale, overlain by the glacial deposits composed of 153 

outwash sand and gravel, which form the unconfined aquifer. Dominance of the soil types in 154 
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the watershed includes clay, silt, sand, and organic materials. The land use and land cover 155 

(LULC) types for this watershed are occupied by approximately 47% agriculture (dominated 156 

by corn and soybeans), 21% forest, 9% open land, and 7% urban (Figure 2). Varied topography 157 

and heterogeneous subsurface properties, diverse vegetation and land use types render the 158 

watershed well suited for our study. We use a relatively fine grid resolution of 400m×400m for 159 

horizontal discretization which produces a 247×366 mesh for the whole watershed and 20 160 

vertical layers to simulate the vadose zone dynamics and 2 layers for the groundwater domain 161 

(unconfined and confined aquifers). 162 

2.2.2 Data sources 163 

Details of data assimilation and data integration algorithms of PAWS are available in 164 

(Shen et al., 2014) thus we simply introduce the basic data input and processing information in 165 

this section. For river network simulation, National Hydrography Dataset (NHD) 166 

(https://nationalmap.gov/hydro.html) from U.S. Geological Survey (USGS) is used and 167 

reorganized as ‘river segments’ with a length of 400m in correspondence to our grid resolution. 168 

The 30 m resolution National Elevation Dataset (NED) from USGS serves as the Digital 169 

Elevation Model (DEM) for topographic calculations (e.g. surface slope and overland flow). 170 

To avoid possible compensation errors from other hydrologic components resulting from 171 

reduced channel density (Wang and Wu, 2013), we keep a relatively high river network density 172 

and include up to level-5 rivers (Figure. 1). NHD is overlaid on the NED model to extract a 173 

profile of elevations simulated as the riverbank elevations. A 30 m resolution raster data 174 

provided by the Michigan Department of Natural Resources (MDNR), i.e., the Integrated 175 
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Forest Monitoring Assessment and Prescription (IFMAP) data set (MDTMB: Michigan 176 

Department of Technology, Management & Budget, 2016) is employed as the Land use and 177 

Land cover layout. PAWS regroups the land use and land cover using a hierarchical stochastic 178 

selection method to do reclassifications while preserving the proportionality between the land 179 

use types of the original dataset (Shen et al., 2014). Soil type and properties information are 180 

obtained from Soil Survey Geographic (SSURGO) (Soil Survey Staff) database from the U.S. 181 

Department of Agriculture, Natural Resources Conservation Services (NRCS). Spatially 182 

distributed soil parameters are processed by the pedotransfer functions provided in Rosetta 183 

(Schaap et al., 2001) with an Artificial Neutral Network method to provide information of van 184 

Genuchten parameters and to calculate soil water retention properties and unsaturated 185 

conductivities. Climate data (e.g., precipitation, snowfall, daily maximum temperature and 186 

minimum temperature, and wind speed) are acquired from National Climatic Data Center 187 

(NCDC, 2010) of the National Oceanic and Atmospheric Administration (NOAA) and 188 

Michigan Automated Weather Station Network (MAWN) (Enviro-weather, 2016). The nearest 189 

neighbor interpolation scheme is used for spatial interpolation of climate data sets. Locations 190 

of meteorological stations are shown on Figure 1, marked as NCDC and MAWN stations 191 

respectively. We downloaded the evapotranspiration data from Moderate Resolution Imaging 192 

Spectroradiometer (MODIS) Global Evapotranspiration Project (MOD16) 193 

(http://www.ntsg.umt.edu/project/mod16), which is part of a NASA/EOS project to estimate 194 

global terrestrial ET from earth land surface using remote sensing. 195 

2.3 Step-wise calibration 196 



10 

 

Instead of calibrating to river discharge data exclusively, the calibration procedure 197 

employed in this work uses several state variables involved in the quantification of major 198 

hydrologic fluxes. Besides the parameters of the PAWS model described in Shen et al. (2013), 199 

we estimate several additional parameters that are listed in Table S1 in Supporting Information 200 

(SI). To estimate spatially varied parameters such as hydraulic conductivity and to honor 201 

geology and the raw data, we use a linear transformation of the form a b= +y x to adjust the 202 

parameters where x represents the original parameters which vary spatially, y is the 203 

transformed variable and a and b are constants. Based on the physical meaning and scale effect 204 

of each parameter, the parameters are adjusted as shown in Table 1 using operators which are 205 

either pure multipliers noted with a × (non-zero value of a and b = 0 in the above equation) or 206 

purely additive constants added to the original value noted with a + (that is, a = 1 and a non-207 

zero value of b). The parameters are separated into three groups according to their relevance to 208 

certain processes in controlling the water fluxes, following similar approaches used by Stahl et 209 

al. (2008), Huss et al. (2008), and Ragettli and Pellicciotti (2012).  210 

This procedure starts with adjusting the annual ET outputs in correspondence to MOD16 211 

products. The aim of this step is to constrain the largest water flux in the model first, as the 212 

annual ET is approximately 55% to 75% of the total annual precipitation in this region 213 

(Kalamazoo River Watershed Council, 2011). Since we do not have spatially distributed soil 214 

moisture observations to constrain our vadose zone simulations, we also employ the annual 215 

average ET for controlling land surface processes (e.g., interception depth) and the plant soil-216 

uptake processes using a tunable parameter γ in root water uptake efficiency (Lai and Katul, 217 
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2000) and other soil properties. Since the data integration schemes of PAWS have already 218 

incorporated the heterogeneity of vegetation types and soil properties, the van Genuchten soil 219 

parameters are slightly adjusted based on the initial parameters generated by Rosetta (A newer 220 

version Rosetta 3 is also available, Zhang and Schaap, 2017). In the second step, we focus on 221 

improving the comparisons of stream discharge calibrated to the USGS gauging observations 222 

at the outlet for each sub-watershed by adjusting the values of river bed conductivity, length of 223 

flow paths for runoff contribution to overland flow domain, and river bed elevation, all of 224 

which have uncertainties associated with. The river bed conductivity parameter (Kr) is spatially 225 

heterogeneous, and is initially estimated as �� = ����� for each river segment grid (Shen et 226 

al., 2016), where K1 is the first layer groundwater hydraulic conductivity from the well logic 227 

database, Ks is the soil vertical saturated hydraulic conductivity derived from SSURGO 228 

database. The final step is to calibrate the model for the steady state groundwater heads by 229 

adjusting the groundwater hydraulic conductivities. The differential evolution algorithm (Price 230 

et al., 2005) is finally employed to optimize the parameters by minimizing the objective 231 

function f (x), which represents model errors relative to observed values (Eqs. (2) – (6)). Details 232 

of the calibration procedure are illustrated in Figure 3. The upper and lower limits of the 233 

parameters were constrained within the scope of reasonable physical reasoning and were 234 

gradually adjusted during the calibration. The model performance was evaluated using the 235 

Nash-Sutcliffe efficiency metric (NASH) (Eq. 3), the absolute bias (APB) (Eq. 7), and the root 236 

mean squared error (RMSE) (Eq. 8). The RNASH metric is used for calibrating stream 237 
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discharge to emphasize the baseflow contribution (Shen and Phanikumar, 2010), as shown in 238 

Eq. (4). For ET and groundwater heads, NASH is used to calculate fi, as shown in Eq. (3). 239 
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Here x denotes the vector of parameters; fi denotes the objective functions and wi denotes the 247 

weights; i equals unity for ET and steady groundwater head or denotes the i-th stream gauging 248 

stations (i = 1, 2, …, N) for the stream discharge. Oj and Pj denote observations and simulations 249 

respectively. j is the j-th year for ET and groundwater heads or the j-th simulated day for stream 250 

discharge.  251 

2.4 Multi-site calibration 252 
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To further examine the effects of local heterogeneity on the overall model performance, 253 

we divided the whole KRW into 4 sub-areas (Figure 1) and regionalized the parameter groups 254 

accordingly. This division was based not on the drainage areas corresponding to each of the 255 

gauging stations but on the distinct geologic and hydrologic characteristics of the watershed 256 

described in section 2.2.1. Each of the four sub-areas is loosely referred to as sub-watershed 257 

(SW) in this paper since they were formed by combining different 10-digit Hydrologic Unit 258 

Code (HUC) sub-watersheds. North Branch and South Branch KRWs are grouped into one 259 

region (SW1). Battle Creek watershed formed SW2 while Morrow Lake and Spring Brook 260 

watersheds are grouped into SW3. Gun river watershed, Rabbit River watershed and small 261 

KRW are grouped as SW4. Each SW is marked with a distinct color in Figure 1. The MLT 262 

calibration for all of the four SWs followed the step-wise calibration procedure described above. 263 

In particular, the stream discharge of each SW was calibrated to the observations from the 264 

stream gauging stations within the SW domain with equal weights assigned to all gauges within 265 

the SW. 266 

2.5 Empirical equation for ω  267 

Different mathematical formulations based on climate and catchment characteristics have 268 

been developed for the Budyko framework in the past (Budyko, 1974; Fu, 1981; Choudhury, 269 

1999; Wang et al., 2009; Donohue et al., 2012; Xu et al., 2013; Liang et al., 2015). Fu’s 270 

equation is used in this work, which provides a relation between the dryness index and the 271 

evaporation ratio with an adjustable parameter ω (1 )ω≤ ≤ ∞  that represents catchment 272 

characteristics (Fu, 1981): 273 
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                        (9) 274 

Yang et al. (2007) found that the parameter ω in Fu’s equation is closely correlated with 275 

three dimensionless landscape characteristics, i.e., the relative infiltration capacity (Berger and 276 

Entekhabi, 2001), the relative soil water storage and the average ground surface slope. 277 

Similarly, Xu et al. (2013) proposed an equation for ω based on data for 224 MOPEX (Model 278 

Parameter Estimation Experiment) watersheds. 279 

In order to identify the controlling factors contributing to differences in the Budyko curves 280 

for the four SWs, we used empirical equations proposed by Yang et al. (2007), i.e. Eqs. (11) 281 

and (12) and Xu et al. (2013), i.e. Eq. (13), to estimate the ω values in Eq. (9). Three 282 

dimensionless variables were evaluated by Yang et al. (2007) as the key descriptors of a 283 

catchment to estimate the parameter ω, i.e., the relative infiltration capacity (Berger and 284 

Entekhabi, 2001), the relative soil water storage and the average ground surface slope. The 285 

relative infiltration capacity used in the Eqs. (11) and (12) in Yang et al. (2007) is defined as 286 

the ratio of saturated hydraulic conductivity Ks (mm hour-1) to the mean precipitation intensity 287 

r
i  (mm hour-1) and represents infiltration excess. The mean precipitation intensity r

i  is 288 

averaged over the rainy hours of the simulation period. To represent the effect of vegetation 289 

and soils on the annual water balance, the plant extractable water capacity, Smax (Dunne and 290 

Willmott, 1996) is employed and scaled by the mean annual potential evapotranspiration ( p
E ) 291 

in a dimensionless form, i.e., the relative soil water storage ( max
S /

p
E ). Smax is calculated as: 292 

max ( )f w rootS dθ θ= − ×                                 (10) 293 
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where θf and θw are the soil moisture contents at field capacity and wilting point respectively; 294 

droot = min (dTop , drmax), where dTop is the top soil depth and drmax is the maximum root depth 295 

of each vegetation type. droot is also the most direct parameter representing the vegetation type 296 

affecting the ω value. Another dimensionless parameter is the average ground surface slope 297 

(tan β). They used an empirical non-linear functional form as Eqs. (11) and (12), considering 298 

the correlations of the parameter ω with the three descriptors. A stepwise regression analysis 299 

of the data from 108 non-humid catchments in China was used to estimate the functional form 300 

and was generalized as Eq. (12).  301 
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1 2 3
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f f f
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Xu et al. (2013) proposed the following equation for ω for basins with area 100 - 10,000 km2: 304 

5.05722 0.09322( ) 0.13085( )

1.31697( ) 0.00003( ) 0.00018( )

lat CTI

A elevNDVI

ω 
−

= − +
+ + 

                  (13) 305 

Where lat is the basin center latitude, [ ]/
s

CTI  ln A tanβ=  is the compound topographic index, 306 

also called the topographic wetness index (Sørensen et al., 2006; Gessler et al., 1993), As is the 307 

specific catchment area (m2) per unit width orthogonal to the flow direction and β  is the 308 

slope angle in radians. NDVI is the normalized difference vegetation index, A is the catchment 309 

area (km2) and elev is the elevation (m).  310 

      We used Eqs. (12) and (13) to estimate the ω values for the four SWs and the whole 311 

KRW. In addition, we used our simulated results to calculate the fitted values of ω following 312 
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the Budyko framework in Eq. (9). The sets of ω values are then compared to assess the physical 313 

relevance of parameters to identify any deficiencies in each methodology. The values of θf and 314 

θw are directly obtained from the SSURGO database; for Ks we used the calibrated data sets. 315 

dTop values are obtained from a 5 min resolution data set (Food and Agricultural Organization, 316 

2003), following the same approach of Yang et al., (2007); drmax values are obtained for each 317 

vegetation as described in Zeng (2001) and weighted with the percentage of the corresponding 318 

vegetation. NDVI values are obtained from the NASA Earthdata website 319 

(https://earthdata.nasa.gov/). 320 

3. Results and Discussion 321 

In this section, we present the results for major hydrologic fluxes following the same order 322 

we used for the calibration procedures. Inter-annual water balances of a watershed can be 323 

described using the equation: 324 

S P Q E∆ = − −                                      (14) 325 

where P is precipitation, Q is runoff and E is evapotranspiration. ΔS denotes the change of 326 

storage over the simulation period (i.e., the difference between the amount of water storage 327 

over the simulation period). All variables are annual average fluxes (mm yr-1). The calibrated 328 

parameters are tabulated in Table 1. The parameters here are the multipliers or the additive or 329 

multiplicative constants used to change the initial model parameters. The real parameter values 330 

after the calibrations are tabulated in Table 2. For spatially heterogeneous parameters, we list 331 

the minimum, the maximum, the mean and the median values of the optimized parameters for 332 

each (sub-) watershed. For spatially homogeneous parameters, we simply list the values. All 333 
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water balance components are expressed in mm yr-1 while conductivity values are expressed in 334 

mm hr-1. The riverbed conductivity (Kr) values are low compared to the aquifer hydraulic 335 

conductivity values. This observation and the ranges of Kr values are supported by data based 336 

on geophysical surveys and temperature modeling reported for sites along the Great Miami 337 

River in Ohio (Wojnar et al., 2013). 338 

3.1 The spatial and temporal ET results 339 

    Figures 4 (a) and (b) show the annual-average spatial maps of ET based on the simulations 340 

and MODIS16 data respectively. The spatial maps of ET from simulations and MODIS data 341 

generally follow a similar pattern. The results of the linear correlation analysis for the spatially 342 

distributed ET simulated values against the LULC types and soil types are summarized in 343 

section S1 and Table S2. The PAWS model outputs resolved the ET heterogeneity better than 344 

did the remotely sensed MODIS data. The major land cover in northwestern KRW is forest and 345 

there are many lakes and reservoirs located in the middle of the watershed. Therefore, we 346 

expect high ET values within this area as shown in simulated ET maps. The south-central areas 347 

of Kalamazoo (where the MODIS data are blank) are urban areas, which correspond to the low 348 

ET values in PAWS output (colored blue). Details related to the spatial variability of ET are 349 

further studied in the analysis based on Budyko framework in a later section.  350 

Annual average ET of the 7-year simulation period is 583.43 mm yr-1, which is comparable 351 

to the MODIS value, 559.89 mm yr-1. To further evaluate simulated ET, the monthly ET time 352 

series (averaged over the entire watershed) is compared with MODIS16 data in Figure 5. The 353 

simulated monthly ET is similar compared with MODIS 16 data. The most obvious deviations 354 
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are during winter months when the model underestimates, whereas in most summer months the 355 

model overestimates MODIS ET data. The mismatch between MODIS and simulation is 356 

probably due to the different algorithms used. PAWS (via CLM) uses a resistance approach to 357 

describe ET based on the two-big leaf model (Dai et al., 2004), while the MODIS product is 358 

based on the Penman-Monteith formulation (Mu et al., 2011).  359 

3.2 Stream flow comparisons 360 

Figure 6 shows the 7-year stream flow comparisons between simulations and observations 361 

from 6 different USGS gauging stations in the KRW. The NASH values range from 0.57 to 362 

0.87, as tabulated in Table S3, which showed fairly well performance. At Gauging station 363 

04105000, the optimized river bed conductivity values for all (sub-)watersheds are not 364 

significantly different compared with the first set of values used in (Shen et al. 2016), which 365 

has a log mean of 0.12 m/day in another watershed in Michigan. While Hoaglund et al. (2002) 366 

assigned a uniform value of 0.086 m/day to the riverbed conductivity for all rivers in a regional 367 

groundwater modeling study of Michigan. At the outlet gauging station 04108660 of the whole 368 

KRW, outputs show almost similar performance as the heaviest weight of the optimization 369 

strategy is laid on the outlet gauging station. Thus, the multi-site strategy helped in quantifying 370 

the overall stream flow values by preventing simulation compensation errors from other 371 

processes.  372 

3.3 Steady state groundwater head comparisons 373 
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The plots of simulated versus observed depths to groundwater table from the Michigan 374 

Wellogic database (State of Michigan, 2016) for each computational grid cell are shown in 375 

Figure 7. The overall NASH values, as tabulated in Table 3, are over 0.91 showing a spatially 376 

good match. These values are comparable to or better than the reported NASH values for water 377 

table comparisons (e.g., Niu et al., 2014, Shen et al., 2013). The simulated annual groundwater 378 

recharge values are within the range of 176 - 351 mm yr-1 which was estimated with a tritium 379 

interface method by Delcore and Larson (1987) in the same watershed.  380 

3.4 Soil Moisture and Soil Temperature Comparisons 381 

Figures 8 and 9 show the 10 cm soil moisture and soil temperature comparisons at two 382 

MAWN stations. It should be noted that the observed data represent a point measurement as 383 

data were collected using a Campbell Scientific CS616 water content reflectometer (WCR) 384 

whereas our simulated results represent an average of a grid cell domain with area of 400×400 385 

m2. At station Albion (Figure 8 (a)), simulated soil moistures show almost the same trend 386 

comparing with observations but generally lower in winter and higher in summer. For example, 387 

around February 2004, the simulated soil moisture values are below 0.1 while the observed soil 388 

moisture values are between 0.2 and 0.25. Around July 2005, the simulated soil moistures are 389 

above 0.1 while the observations are slightly lower. At Michigan State University Kellogg 390 

Biological station (MSUKBS) (Figure 8 (b)), the relatively higher soil moistures could not be 391 

simulated accurately in February 2009, which may due to the underestimated rainfall intensity 392 

during this period. For the soil temperature simulations (Figure 9), the simulated results 393 

generally show a good performance at both stations compared with observations except that 394 
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more fluctuations in simulated results are noted when temperature is below 0 oC during winter. 395 

The static temperatures around 0 oC measured by the WCRs during winter time are possibly 396 

because of the frozen soil. It was found by several researchers that the responses of WCRs such 397 

as the CS616 are sensitive to temperature and soil type (Benson et al., 2006; Saravanathiiban, 398 

2014). Considering these differences, the comparisons of soil moisture and soil temperature 399 

are considered acceptable for vadose zone simulations.  400 

3.5 Analysis based on the Budyko framework 401 

    Annual water budgets based on Eq. (14) for the whole KRW and four SWs are listed in 402 

Table 4. The plots of annual E/P versus Ep/P (termed Budyko pairs) in the Budyko framework 403 

for the four SWs and the whole KRW are shown in Figure 10 for the 7- year simulation period 404 

(2003 - 2009). All the Budyko curves in the section refer to the Budyko-type curves are 405 

generated by Eq. (9) using simulated results. For the whole KRW, the annual ET value is 406 

calculated using three methods (Chen et al., 2013; Condon and Maxwell, 2017): 1) direct ET, 407 

simulated ET values are used; 2) inferred ET, assuming the annual storage change is negligible, 408 

ET is computed as: ET = P – Q in Eq. (9) and 3) effective precipitation, P is replaces by P – ∆409 

S in Eq. (9). The alfalfa (mature, 40cm canopy height) reference ET values are calculated as 410 

the Ep values, using the Penman - Monteith equation (Dingman, 2008). In this figure, the 411 

horizontal straight line indicates the arid or water-limited conditions, while the 1 to 1 line 412 

indicates the humid or energy-limited upper bound. The fitted ω values and the R2 values for 413 

the curve fitting using Eq. (9) are tabulated in Table 5.  While the ω values using the three 414 

different methods are slightly changed due to the partitions of water storage (Istanbulluoglu et 415 



21 

 

al. 2012; Wang, 2012), the ranks of ω values among the four SWs and whole KRW are the 416 

same. Therefore, the rest part of Budyko curve analyses are based on results of effective 417 

precipitation to simplify our discussion.  418 

The average Mahalanobis distance D (Mahalanobis, 1936) of each SW was calculated 419 

using the whole KRW results as a reference sample (see Table 6) to represent the dissimilarity 420 

of each SW from the averaged pattern. The Mahalanobis distance is a measure of distance in a 421 

multidimensional parameter space, which is similar to the Euclidean distance but takes into 422 

account the covariance among dimensions of the reference sample. Large D indicates more 423 

dissimilarity. SW4 shows the most obvious dissimilarities from the KRW, and this is also 424 

apparent from Figure 10 - SW4 has consistently higher E/P values compared to other sub-425 

basins, given similar Ep/P. 426 

The ω values of the four SWs and the whole KRW calculated by Eqs. (12) and (13) and 427 

the parameters involved are tabulated in Table 6. All the parameters are calculated within each 428 

grid cell and are averaged across the watershed. The ω values calculated by Yang’s method for 429 

the 4 SWs and whole KRW are generally lower compared with the fitted ω values in Budyko’s 430 

framework for the 7-year simulation period, with an average deviation around 8.5%. Five major 431 

factors could be identified as the reasons for the uncertainties of calculating ω using Yang’s 432 

method here. First, there are errors in calculating the parameters (for example, there are 433 

uncertainties in calculating the average ground surface slope). Second, although Yang’s method 434 

has considered relative infiltration capacity and relative soil water storage, it overlooked the 435 

effects of groundwater flow which also play an important role in water storage and stream 436 
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discharge contribution (Wang, 2012; Shen et al., 2013; Condon and Maxwell, 2017). Third, 437 

the climate conditions of 108 catchments used to generate the empirical equation of Yang’s 438 

method are different from the climate of KRM; there are uncertainties in the coefficients 439 

considering the climate variations. Fourth, there may be parameter inversion errors during the 440 

parameter generation processes of Yang’s and Xu’s methods. Fifth, open water ET plays an 441 

important role in SW4, however, this factor is not included in the three indicators suggested by 442 

Yang’s method. This is also an important reason ω is underestimated using Yang’s method for 443 

SW4. Xu’s method, however, overestimate the ω values with an average deviation around 444 

10.5%, especially for the whole KRW. Xu’s method utilizes the catchment area as an indicator 445 

which is positively correlated with ω. This may create a discrepancy to differentiate the ω 446 

values between whole watershed and SWs. Since the area for the whole watershed is larger 447 

than each SW, which indicates larger ω value for the whole watershed, whereas its ω values 448 

should fall between the ranges of those of all SWs based on water budgets. In addition, the ω 449 

values obtained using Xu’s method for the four SWs are not as different as ω values obtained 450 

from using Yang’s method and the simulated data. This could be due to the climate conditions, 451 

i.e. the rainfall intensities, are not explicitly expressed in Xu’s method. Besides the possible 452 

uncertainties in estimating the values of ω in Yang’s and Xu’s methods, any errors in the model 453 

outputs of the ET and the estimation errors of Ep could also shift the Budyko pairs to some 454 

extent compared with the two empirical methods.  455 

      The ω values of the four sub-watersheds do not change much and generally fall within 456 

the range of 2 ~ 3, and one major reason is that the vegetation types and percentages do not 457 
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vary significantly among the four SWs. This information is represented as the indicators of root 458 

depth in Yang’s method and NDVI in Xu’s method. Although the ω values produced by the 459 

three methods (two empirical equations and numerical simulation based on the PAWS model) 460 

are different, SW4 has the highest value of ω among all four sub-watersheds., and the most 461 

significant influencing factor is the mean precipitation intensity in Yang’s method and the 462 

watershed elevation in Xu’s method. Compared to the other SWs, SW4 had a relative higher 463 

precipitation intensity, which decreases the relative infiltration capacity accordingly. 464 

Relatively less infiltration capacity translates to more surface ponding, which produces higher 465 

actual ET. Some previous studies (e.g., Schenk and Jackson, 2002) suggested that rooting depth 466 

increases with precipitation (at least in water-limited ecosystems). Results shown in Table 6 467 

suggest that SW 4 has the highest precipitation and root depth values, although the differences 468 

of root depth values are not significant. The lake effect may be responsible for the higher 469 

precipitation intensity at SW4, which is also implicitly reflected in the elevation indicator of 470 

Xu’s method. In contrast, SW3 shows the lowest ω value, and higher averaged soil saturated 471 

hydraulic conductivity increases the relative infiltration capacity, which tends to generate lower 472 

actual ET. In addition, SW3 has higher ground surface slope and accordingly lower CTI, which 473 

indicates higher potential to produce surface runoff with less water retained for 474 

evapotranspiration (Hjerdt et al., 2004, Yang et al., 2019). Another factor influencing the ET 475 

of SW3 could be its largest urban area ratio among all the SWs; this information was 476 

incorporated in the data integration algorithm during the model construction (Shen et al., 2013). 477 

These calculated ω values are also in correspondence to D values discussed above when 478 
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considering the deviations of ω values of the four SWs from that of the whole KRW. 479 

Considering all the possible errors in estimating the values of ω, the dominant heterogeneous 480 

characteristics controlling the water budgets are effectively identified within the indicators of 481 

the two empirical methods at SW scale, which indicates the usefulness of the two empirical 482 

methods in predicting the interannual variability of regional water balances over a long period.  483 

      The advantage of the Budyko approach lies in its ability to predict changes in long term 484 

ET or water yields due to changes in vegetation (e.g. replacing traditional crops with biofuel 485 

crops) based on multiple observations. The Budyko approach could efficiently generate the 486 

general functional patterns of catchments and inform controlling hydrologic parameters based 487 

on empirical relationships. These results reveal the possibility of using Budyko approach to 488 

guide the calibration of PBHM models, to recognize the controlling processes, and to constrain 489 

individual processes in the integrated system. 490 

4. Conclusions 491 

In order to accurately quantify the spatial and temporal inter-annual water balances for a 492 

heterogeneous catchment, in this work, we used a step-wised calibration method combined 493 

with a multisite calibration strategy to optimize a PBHM. The calibration objectives are not 494 

limited to stream discharge exclusively, while also include ET and groundwater heads to 495 

resolve the equifinality issue. This calibration strategy successfully converged, and the 496 

calibrated results showed good comparisons with the observed data for different SWs. The 497 

Budyko curves based on the simulated water balance components and two empirical equations 498 

(Yang et al. (2007) and Xu et al, (2013)) are employed to quantify the variabilities of inter-499 
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annual water balances for different SWs. Although Yang’s method (Yang et al., 2007) is more 500 

suitable for the KRW, the dimensionless landscape characteristics used in both empirical 501 

relations are found to be useful in characterizing the integrated hydrologic performances based 502 

on the Budyko framework.  503 

Given its simplicity, the Budyko approach could efficiently generate the general functional 504 

patterns of hydrologic system at SW scale. The consistency of presenting the spatial variability 505 

of water budgets between PBHM and Budyko approach reveal the possibility of synthesizing 506 

Darwinian and Newtonian approaches, to deepen understanding of the hydrologic system 507 

(Harman and Troch, 2014). 508 
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Figures 730 

Figure 1.  Map of the Kalamazoo River watershed. Elevation is shown as the color gradient. 731 

National Hydrography Dataset (NHD) rivers, U.S. Geological Survey (USGS) gauges, 732 

National Climatic Data Center (NCDC) weather stations and Michigan Automatic Weather 733 

Network (MAWN) stations are shown. 734 

Figure 2.  Land Use and Land Cover map for the Kalamazoo River Watershed. 735 

Figure 3.  Flow chart of the calibration procedure. See Table S1 for an explanation of 736 

variables and their meaning. 737 

Figure 4.  Spatial map of yearly averaged evapotranspiration for the Kalamazoo River 738 

watershed for the 7-year period (2003–2009) of (a) simulated output and (b) MODIS data. 739 

Figure 5.  Monthly ET comparisons of simulated outputs with MODIS data for the 7-year 740 

simulation period (2003–2009). NASH is the Nash-Sutcliffe efficiency metric; APB is the 741 

absolute bias; RMSE is the root mean squared error. 742 

Figure 6.  River discharge comparisons of simulated outputs with observations at different 743 

U.S. Geological Survey (USGS) gauge stations. Sim is the simulated; Obs is the USGS 744 

observations. NASH is the Nash-Sutcliffe efficiency metric. The model performance for each 745 

gauge is summarized in Table S3. 746 

Figure 7.  Plots of simulated versus observed depth to groundwater table (from Wellogic 747 

data set) for each computation grid cell. SW1, SW2, SW3, SW4 are the simulated results 748 

within each SW. 749 

Figure 8.  10 cm Soil Moisture comparisons of simulated outputs with MAWN (Michigan 750 

Automatic Weather Network) station observations at (a) Albion and (b) MSUKBS. Sim is the 751 

simulated outputs; Obs is the MAWN station observations.  752 

Figure 9.  10 cm Soil Temperature comparisons of GLB and MLT simulated outputs with 753 

MAWN (Michigan Automatic Weather Network) station observations at (a) Albion and (b) 754 

MSUKBS. Sim is the simulated outputs; Obs is the MAWN station observations.  755 

Figure 10.  Budyko Curve Analysis for the 4 SWs and the whole Kalamazoo River 756 

watershed for a 7-year simulation period from 2003 to 2009 using a) direct ET, b) inferred 757 

ET and (c) effective precipitation.  758 
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Table 1.  Calibrated parameter operator values and the optimization types  1 

    optimized operator values    

Symbol(Unit) optimization type SW1 SW2 SW3 SW4  

γ × 4.10×10-2 4.30×10-2 3.68×10-2 1.68×10-2  

αice + 0.45 -0.20 0.64 0.53 
 

K1 × 1.27 0.78 1.39 0.99  

K2 × 1.07 1.2 2.19 1.86  

Ks × 1.46 0.96 0.81 1.26 
 

N + -0.14 -0.26 -0.15 0.08  

A (1 m-1) × 0.86 0.88 0.81 1.43  

L (m) + -35 -6 -54 -44  

ho (m) + 4.24×10-2 4.45×10-2 4.38×10-2 3.98×10-2 
 

Kr (m day-1) × 1.10×10-2 7.39×10-3 2.15×10-2 1.01×10-1 
 

hr (m) + 0.14 0.21 0 0 
 

2 
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Table 2.  Calibrated parameter values for MLT methods. For spatially heterogeneous parameters we listed the minimum (min), the maximum 3 

(max), the mean and the median values within the specific simulated domain. 4 

Parameter (Unit) 

SW1 SW2 SW3 SW4_ 

min-max(mean, median) min-max(mean, median) min-max(mean, median) min-max(mean, median) 

γ 4.1×10-2 4.3×10-2 3.68×10-2 1.68×10-2 

αice 3.45 2.90 3.64 3.53 

K1 (m/day) 0.305-105.07(26.96,34.99) 0.249-62.86(17.41,13.58) 4.660-80.34(24.3,24.84) 0.097-75.05(19.15,18.27) 

K2 (m/day) 0.019-5.05(1.61,1.38) 0.017-6.18(0.947,1.30) 0.018-6.07(1.86,3.74) 0.004-1.96(0.10,0.16) 

Ks (mm/hour) 1.25-263.72(73.18,78.83) 0.58-205.84(54.26,24.59) 0.38-275.15(113.53,98.64) 0.69-246.02(67.73,70.49) 

N 1.05-2.26(1.30,1.31) 0.99-2.13(1.19,1.16) 1.06-1.93(1.31,1.31) 1.25-2.81(1.51,1.53) 

A(1/m) 0.032-6.48(4.06,4.21) 0.038-6.37(3.01,3.22) 0.041-6.22(4.35,4.90) 0.051-6.99(4.68,5.06) 

l(m) 365 394 346 356 

ho(m) 4.24×10-2 4.45×10-2 4.38×10-2 3.98×10-2 

Kr(m/day) 0.011-0.206(0.109,0.110) 7.1×10-3-0.113(0.059, 0.058)  0.077-0.318(0.174,0.177) 0.014-0.385(0.190,0.190) 

hr(m) 
246.23-348.54  

(289.84, 287.56) 

247.12-287.05 

(267.06,266.69) 

232.71-285.50 

(232.71,258.65) 

172.56-285.44 

(211.90,212.56) 

5 
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Table 3.  Comparison of observed (Wellogic data) steady state depth to groundwater table 

with simulation results based on the GLB and MLT methods. 

  NASH APB (%) RMSE 

SW1 0.97 8.19 1.09 

SW2 0.91 6.07 1.68 

SW3 0.98 0.42 1.64 

SW4 0.98 0.53 1.70 

 

Table 4.  Water Budgets. 

Water balance components  

(unit: mm yr-1) 
SW1 SW2 SW3 SW4 whole KRW 

Precipitation 868.54 860.67 876.29 1000.20 913.62 

Percent % 100.00 100.00 100.00 100.00 100.00 

Infiltration 448.67 463.37 485.43 484.52 471.16 

Percent % 51.66 53.84 55.39 48.44 51.57 

Recharge 237.29 205.54 198.37 252.00 228.76 

Percent % 27.32 23.88 22.64 25.19 25.04 

Overland Flow 219.02 207.36 249.60 235.01 233.46 

Percent % 25.22 24.09 28.62 22.90 25.55 

Groundwater contribution to streams 77.59 79.89 81.61 89.08 85.08 

Percent % 8.93 9.28 81.61 9.01 9.31 

Net Stream discharge 296.61 286.25 331.21 324.09 318.54 

Percent % 34.15 33.26 37.93 31.91 34.87 

Evapotranspiration 556.89 566.08 552.78 654.69 584.43 

Percent % 64.12 65.77 62.73 65.14 63.97 

Storage change 15.04 8.34 -7.70 21.42 10.65 

Percent % 1.73 0.97 -0.66 2.95 1.16 

 

Table 5. The fitted ω values and the R2 for the curve fitting using Equation (9) 

  direct ET inferred ET effective precipitation 

 ω R2 ω R2 ω R2 

SW1 2.45 0.76 2.55 0.45 2.47 0.73 

SW2 2.44 0.73 2.48 0.81 2.44 0.70 

SW3 2.27 0.74 2.26 0.68 2.27 0.72 

SW4 2.85 0.8 2.98 0.63 2.84 0.80 

whole KRW 2.44 0.8 2.54 0.47 2.46 0.72 
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Table 6.  Paramters invloved in plotting the Budyko pairs and for calculating the ω value in 

Equations (12) and (13) 

  SW1 SW2 SW3 SW4 whole KRW 

Area (km2) 1395.81 726.41 1154.08 1983.92 5260.22 

Elevation (m) 303.46 278.39 272.12 225.59 266.15 

Average slope (%) 0.92 0.96 1.30 1.09 1.06 

Basin Center Latitude  42.20 42.43 42.36 42.59 42.39 

Compound Topographic Index (CTI)  9.18 9.09 8.82 9.19 9.14 

Average NDVI 0.39 0.41 0.40 0.42 0.41 

Forest (%)  21.32 20.93 22.46 22.82 21.47 

Agricultural (%)  53.32 54.80 43.08 47.38 47.32 

Urban area (%)  4.97 4.72 10.41 4.58 6.60 

Mahalanobis distance  2.23 3.47 4.37 5.49 ---- 

PET, Ep (mm/year)  807.19 848.71 887.35 857.81 846.52 

Average KS (mm hr-1)  73.18 54.26 113.53 67.73 80.83 

Mean precip intensity ir (mm hr-1)  12.69 9.3 13.83 19.17 11.25 

Smax (mm) 48.56 48.46 51.77 50.98 50.09 

θf - θw  0.35 0.34 0.36 0.35 0.35 

droot (mm) 140.34 142.10 144.74 147.38 144.73 

ω based on simulation 2.47 2.44 2.27 2.84 2.46 

ω calculated with Eq.(12) 2.30 2.26 2.12 2.51 2.16 

ω calculated with Eq.(13) 2.81 2.8 2.78 2.86 2.95 
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